41 research outputs found

    Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media

    Full text link
    In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler time-discrete scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2L^2 error estimates hold without any time-step (convergence) condition, while all previous works require certain time-step condition. Our theoretical results provide a new understanding on commonly-used linearized schemes for nonlinear parabolic equations. The proof is based on a splitting of the error function into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of corresponding time-discrete PDEs. The approach used in this paper is applicable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations

    Analysis of the Brinkman-Forchheimer equations with slip boundary conditions

    Full text link
    In this work, we study the Brinkman-Forchheimer equations driven under slip boundary conditions of friction type. We prove the existence and uniqueness of weak solutions by means of regularization combined with the Faedo-Galerkin approach. Next we discuss the continuity of the solution with respect to Brinkman's and Forchheimer's coefficients. Finally, we show that the weak solution of the corresponding stationary problem is stable

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)

    Paraxial Approximation of Ultrarelativistic Intense Beams

    No full text
    this paper, we turn to the case of high energy short beams. More precisely, we consider the transport of a bunch of highly relativistic charged particles in the interior of a perfectly conducting hollow tube. In order to derive a paraxial model, we use as in [3], [4], [5] a frame which moves along the optical axis with the light velocity. In this frame, the bunch is evolving slowly and we are able to derive an approximate model again by an asymptotic expansion technique. At the difference of the stationary case, this paraxial model seems to be new and leads to far cheaper computations than the full Vlasov-Maxwell model
    corecore